Polynomial-time solution of prime factorization and NP-complete problems with digital memcomputing machines.
نویسندگان
چکیده
We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.
منابع مشابه
Memcomputing NP-complete problems in polynomial time using polynomial resources and collective states
Memcomputing is a novel non-Turing paradigm of computation that uses interacting memory cells (memprocessors for short) to store and process information on the same physical platform. It was recently proven mathematically that memcomputing machines have the same computational power of nondeterministic Turing machines. Therefore, they can solve NP-complete problems in polynomial time and, using ...
متن کاملMemcomputing NP-complete problems in polynomial time using polynomial resources
Memcomputing is a novel non-Turing paradigm of computation that uses interacting memory cells (memprocessors for short) to store and process information on the same physical platform. It was recently proven mathematically that memcomputing machines have the same computational power of nondeterministic Turing machines. Therefore, they can solve NP-complete problems in polynomial time and, using ...
متن کاملA Survey and Discussion of Memcomputing Machines
This paper serves as a review and discussion of the recent works on memcomputing. In particular, the universal memcomputing machine (UMM) and the digital memcomputing machine (DMM) are discussed. We review the memcomputing concept in the dynamical systems framework and assess the algorithms offered for computing NP problems in the UMM and DMM paradigms. We argue that the UMM is a physically imp...
متن کاملMemcomputing: Leveraging memory and physics to compute efficiently
It is well known that physical phenomena may be of great help in computing some difficult problems efficiently. A typical example is prime factorization that may be solved in polynomial time by exploiting quantum entanglement on a quantum computer. There are, however, other types of (non-quantum) physical properties that one may leverage to compute efficiently a wide range of hard problems. In ...
متن کاملComputationally Intractable Problems in Communications
The theory of NP-completeness deals with problems for which we do not know a deterministic algorithm for finding the solution in an amount of time polynomial in the size of the input. These problems—belonging to the set N P-complete—are of great practical importance because they arise naturally in numerous decision and optimization problems [Baas]. Yet, no one has shown whether such problems ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chaos
دوره 27 2 شماره
صفحات -
تاریخ انتشار 2017